ПЕСОЧНИЦА - место для Ваших экспериментов!

Исследование учащихся в проекте Внимание! Снимаем!

Материал из ИнтеВики — обучающей площадкой для проведения тренингов программы Intel
Перейти к: навигация, поиск

Содержание

Название проекта

Внимание! Снимаем!

Авторы и участники проекта

Учащиеся 10 - 11 класса и учащиеся школьной медиастудии.

Тема исследования группы

"Высокое качество + небольшой объем = желаемый результат"

Проблемный вопрос (вопрос для исследования)

Как добиться оптимального соотношения качества и объема видео?

Гипотеза исследования

Если увеличивать степень сжатия видеоданных, то качество становится хуже.

Однако, человеческий глаз способен различить гораздо меньше светоцветовых сочетаний, чем передает монитор или телевизор.

Следовательно, можно подобрать такое соотношение качества и объема видеофайла, при котором соотношения качества и объема будут допустимыми и удовлетворительными для человека, не оказывая при этом отрицательного воздействия на зрение и эмоциональное состояние зрителя, подсознательно оценивающего аудиовизуальные качества экранной видеопродукции.

Цель и задачи исследования

Цель

Получение оптимальных характеристик соотношения качества и объема видео.

Задачи:

- Изучить характеристики цифрового видео и их роль в получении технически качественного видео.

- Проанализировать суть алгоритмов кодирования видео.

- Ознакомиться с алгоритмами и методами сжатия видео.

- Получить оптимальные характеристики, позволяющие незаметно для глаз человека изменять качество видео, получая его меньший объем.

Результаты исследования

Основные характеристики цифрового видео

Цифровое видео характеризуется четырьмя основными факторами:

- частота кадра (Frame Rate)

- экранное разрешение (Spatial Resolution)

- глубина цвета (Color Resolution)

- качество изображения (Image Quality).

Частота кадра (Frame Rate)

Стандартная скорость воспроизведения видеосигнала - 25 (30) кадров/с (для кино - 24 кадра/с). Каждый кадр состоит из определенного количества строк, которые прорисовываются не последовательно, а через одну, в результате чего получается два полукадра, или так называемых "поля". Поэтому каждая секунда аналогового видеосигнала состоит из 60 полей (полукадров). Такой процесс называется interlaced видео.

Монитор компьютера для прорисовки экрана использует метод "прогрессивного сканирования" (progressive scan), при котором строки кадра формируются последовательно, сверху вниз, а полный кадр прорисовывается 30 раз каждую секунду. Этот метод называется non-interlaced видео. В этом заключается основное отличие между компьютерным и телевизионным методом формирования видеосигнала.

Глубина цвета (Color Resolution)

Этот показатель является комплексным и определяет количество цветов, одновременно отображаемых на экране. Компьютеры обрабатывают цвет в RGB-формате (красный-зеленый-синий), видео использует и другие методы. Одна из наиболее распространенных моделей цветности для видеоформатов - YUV. Каждая из моделей RGB и YUV может быть представлена разными уровнями глубины цвета (максимального количества цветов).

Для цветовой модели RGB обычно характерны следующие режимы глубины цвета: 8 бит/пиксель (256 цветов), 16 бит/пиксель (65,535 цветов) и 24 бит/пиксель (16,7 млн. цветов).

Для модели YUV применяются режимы: 7 бит/пиксель (4:1:1 или 4:2:2, примерно 2 млн. цветов), и 8 бит/пиксель (4:4:4, примерно 16 млн. цветов).

Экранное разрешение (Spatial Resolution)

Экранное разрешение, или количество точек, из которых состоит изображение на экране. Разные мониторы могут быть рассчитаны на различное базовое разрешение, например, 640 на 480 точек (пикселей) и др., такой формат не является стандартным. Прямой связи между разрешением аналогового видео и компьютерного дисплея нет.

Стандартный аналоговый видеосигнал дает полноэкранное изображение без ограничений размера, часто присущих компьютерному видео. Телевизионный стандарт NTSC (National Television Standards Committe), разработан Национальным комитетом по телевизионным стандартам США. Используемый в Северной Америке и Японии и предусматривает разрешение 768 на 484.

Стандарт PAL (Phase Alternative), распространенный в Европе, имеет большее разрешение - 768 на 576 точек.

Поскольку разрешение аналогового и компьютерного видео различается, при преобразовании аналогового видео в цифровой формат приходится иногда масштабировать и уменьшать изображение, что приводит к некоторой потере качества.

Качество изображения (Image Quality)

Это наиболее важная характеристика. Требования к качеству зависят от конкретной задачи. Иногда достаточно, чтобы картинка была размером в четверть экрана с палитрой из 256-ти цветов (8 бит), при скорости воспроизведения 15 кадров/с. В других случаях требуется полноэкранное видео (768 на 576) с палитрой в 16,7 млн. цветов (24 бит) и полной кадровой разверткой (24 или 30 кадров/с).


Сжатие видео

Следует исходить из разумной достаточности при определении необходимой степени сжатия. При этом необходимо учитывать, как четыре характеристики (частота кадра, экранное разрешение, глубина цвета и качество изображения) влияют на объем и качество видео.

Какую "цену" нам придется заплатить за качественное изображение?

Чем больше глубина цвета, выше разрешение и лучше качество, тем большая производительность компьютера вам потребуется, не говоря уж о громадных объемах дискового пространства, необходимого под цифровое видео.

Учитывая эти характеристики, можно выбрать оптимальный коэффициент сжатия.

В профессиональном видео действует простое правило - чем ниже коэффициент сжатия, тем лучше.

Например, 24-битное цветное видео, при разрешении 640 на 480 и частоте 30 кадров/с потребует передачи 26 Мбайт данных в секунду. Этот поток не только выходит за рамки пропускной способности компьютерной шины, но и моментально "съест" любое дисковое пространство.

Расчеты:

640 горизонтальное разрешение X 480 вертикальное разрешение

307200 точек на кадр X 3 байтов на каждую точку/пиксель

921600 всего байтов на кадр X 30 кадров в секунду

27648000 всего байтов в секунду / 1,048,576 конвертируем байты в Мбайты

Итого: 27648000 байт/с или 2636 Мбайт/с

Иногда для уменьшения этого объема данных до разумного уровня достаточно оптимизировать один из вышеперечисленных параметров видеосигнала. Современные приложения (игры, компьютерные тренажеры, видеокиоски и некоторые деловые пакеты) зачастую не требуют полноэкранного видео. Такие программы обычно используют видео в окне, и для них не требуется оцифровывать целый кадр.

Изменим параметры видеосигнала и сделаем новый расчет для разрешения 320 на 240.

320 горизонтальное разрешение X 240 вертикальное разрешение

76800 точек на кадр X 3 байтов на каждую точку/пиксель

230400 всего байтов на кадр X 15 кадров в секунду

3456000 всего байтов в секунду / 1,048,576 конвертируем байты в Мбайты

Итого: 3456000 байт/с, или 3,3 Мбайт/с

Таким образом, уменьшив размер изображения, мы добились весьма существенного уменьшения объема данных, передаваемых в единицу времени. Однако стандартная ISA-шина имеет пропускную способность всего около 600 Кбайт/с.

Поэтому, даже существенно пожертвовав качеством видео, мы все еще вынуждены оперировать данными, объем которых в 6 раз больше допустимого уровня. К тому же, 3,3 Мбайт занимает всего лишь одна секунда видео. Для двухчасового фильма потребуется 2373 Гбайт дискового пространства! За счет дальнейшего уменьшения размера окна, понижения качества изображения и перехода с RGB формата на YUV (4:1:1) можно добиться еще некоторого снижения объема данных, примерно до 1,5 Мбайт/с. Но этого все равно явно недостаточно.


Методы сжатия видеоданных

Как выбрать метод сжатия?

Методы сжатия данных используют математические алгоритмы для устранения, группировки и/или усреднения схожих данных, присутствующих в видеосигнале. Выбор конкретного алгоритма зависит от вашей конечной цели.

Существует большое разнообразие алгоритмов сжатия, включая PLV, Compact Video, Indeo, RTV и AVC, но только Motion JPEG (Joint Photographic Experts Group), MPEG-1 и MPEG-2 признаны международными стандартами для сжатия видео.

Практически все видеоплаты построены на основе одного из двух методов компрессии: Motion-JPEG или MPEG. Нелегко судить о преимуществе одного формата над другим, тем более что области применения этих форматов несколько различаются, так как технология MPEG кодирования и монтажа до последнего времени была более дорогостоящей и сложной. Большую роль сыграло и анонсирование спецификаций формата MPEG-2, который ляжет в основу новых видеотехнологий не только на компьютерах, но и применительно к телевидению и кино. Судя по всему, этот формат в совокупности с новыми CD-дисками высокой плотности (DVD) основательно изменит привычный видеорынок.

Без сжатия очень трудно обеспечить непрерывную передачу видео со скоростью 21 Мбайт/с (требования CCIR 601 - признанного в мире стандарта цифрового телевидения), а объемы и стоимость хранения несжатых видеоданных на дисках фактически делает невозможным применение PC для чернового монтажа.

Качество сжатия варьирует в довольно широких пределах; обычными для современных видеосистем являются коэффициенты сжатия от 1:4 до 1:100.

Для цифрового оборудования, которое используется при нелинейном монтаже видео с вещательным (1:4 и менее) качеством влияние сжатия может быть особенно заметным.

На сегодняшний день наибольшее распространение получили два стандарта сжатия: Motion-JPEG и MPEG.

Сейчас разрабатываются новые методы сжатия изображения и видеопотока, но какие бы совершенные алгоритмы при этом ни применялись, неизменным остается одно: чем выше коэффициент сжатия - тем хуже качество.

Методы сжатия сводятся к анализу изображения, на основании которого делаются предположения обо всем изображении в целом, что изначально допускает возможность погрешности. Даже если сжатие позволяет достичь прекрасных результатов на картинке с плавными переходами и небольшими шумами, то обработка резкого и зашумленного изображения может привести к худшим результатам.

Выводы

Сжатие видео нужно для уменьшения объема цифровых видео файлов, предназначенных для хранения, при этом желательно максимально сохранить качество оригинала. Различают сжатие обычное в режиме реального времени, симметричное или асимметричное, с потерей качества или без потери, сжатие видеопотока или покадровое сжатие.

Сжатие обычное (в режиме реального времени).

Термин real-time (реальное время) имеет много толкований. Применительно к сжатию данных используется его прямое значение, т. е. работа в реальном времени. Многие системы оцифровывают видео и одновременно сжимают его, иногда параллельно совершая и обратный процесс декомпрессии и воспроизведения. Для качественного выполнения этих операций требуются очень мощные специальные процессоры, поэтому большинство плат ввода/вывода видео для PC бытового класса не способны оперировать с полнометражным видео и часто пропускают кадры.

Недостаточная частота кадров является одной из основных проблем для видео на PC. При производительности ниже 24 кадров/с видео перестает быть плавным, что нарушает комфортность восприятия. К тому же, пропущенные кадры могут содержать необходимые данные по синхронизации звука и изображения.

Симметричное или асимметричное сжатие.

Этот показатель связан с соотношением способов сжатия и декомпрессии видео.

Симметричное сжатие предполагает возможность проиграть видеофрагмент с разрешением 640 на 480 при скорости в 30 кадров/с, если оцифровка и запись его выполнялась с теми же параметрами.

Асимметричное сжатие - это процесс обработки одной секунды видео за значительно большее время. Степень асимметричности сжатия обычно задается в виде отношения. Так цифры 150:1 означают, что сжатие одной минуты видео занимает примерно 150 минут реального времени. Асимметричное сжатие обычно более удобно и эффективно для достижения качественного видео и оптимизации скорости его воспроизведения. К сожалению, при этом кодирование полнометражного ролика может занять слишком много времени, вот почему подобный процесс выполняют специализированные компании, куда отсылают исходный материал на кодирование (что увеличивает материальные и временные расходы на проект).

Сжатие с потерей или без потери качества.

Чем выше коэффициент сжатия, тем больше страдает качество видео. Все методы сжатия приводят к некоторой потере качества. Даже если это не заметно на глаз, всегда есть разница между исходным и сжатым материалом. Пока существует всего один алгоритм (разновидность Motion-JPEG для формата Kodak Photo CD), который выполняет сжатие без потерь, однако он оптимизирован только для фотоизображений и работает с коэффициентом 2:1.

Сжатие видеопотока или покадровое сжатие.

Это, возможно, наиболее обсуждаемая проблема цифрового видео.

Покадровый метод подразумевает сжатие и хранение каждого видеокадра как отдельного изображения.

Сжатие видеопотока основано на следующей идее:

несмотря на то, что изображение все время претерпевает изменения, задний план в большинстве видеосцен остается постоянным - отличный повод для соответствующей обработки и сжатия изображения.

Создается исходный кадр, а каждый следующий сравнивается с предыдущим и последующим изображениями, а фиксируется лишь разница между ними.

Этот метод позволяет существенно повысить коэффициент сжатия, практически сохранив при этом исходное качество. Однако в этом случае могут возникнуть трудности с покадровым монтажом видеоматериала, закодированного подобным образом.

Коэффициент сжатия

Этот показатель особенно важен для профессионалов, работающих с цифровым видео на компьютерах. Его ни в коем случае нельзя путать с коэффициентом асимметричности сжатия.

Коэффициент сжатия - это цифровое выражение соотношения между объемом сжатого и исходного видеоматериала. Для примера, коэффициент 200:1 означает, что если принять объем полученного после компрессии ролика за единицу, то исходный оригинал занимал объем в 200 раз больший.

Обычно, чем выше коэффициент сжатия, тем хуже качество видео. Но многое зависит от используемого алгоритма.

Для MPEG сейчас стандартом считается соотношение 200:1, при этом сохраняется неплохое качество видео.

Различные варианты Motion- JPEG работают с коэффициентами от 5:1 до 100:1, хотя даже при уровне в 20:1 уже трудно добиться нормального качества изображения.

Кроме того, качество видео зависит не только от алгоритма сжатия (MPEG или Motion-JPEG), но и от параметров цифровой видеоплаты, конфигурации компьютера и даже от программного обеспечения.

Полезные ресурсы

www.5ballov.ru

www.pedsovet.org

www.edu.of.ru/video

www.visio.ramler.ru

http://ru.youtube.com

http://edu.of.ru/video/default.asp

Другие документы

Курс TEO2 Киров 6 мая - 4 июля 2008

Персональные инструменты
Образовательная галактика Intel Программа Intel 'Обучение для будущего' Программа 'Учимся с Intel' Летописи России Инициативы Intel в образовании